Technical Solution to Mitigate 800 MHz Interference

FCC Presentation May 29, 2003

Motorola Responds to FCC Inquiry

"Given the critical importance of these interference issues, I am writing to inquire...if you are aware of any practical, technical, or procedural solutions or information... that you believe we should consider..."

April 18 FCC Letter

Technical Means to Address Interference

- May 6 Technical Response addresses interference
 - Outlines advances in receiver technology
 - Provides technical solution to interference
 - Applies solution to areas where interference is being experienced
- Technical solution combines receiver changes with Best Practices
 - Intermodulation Interference Attenuation provides 3:1 improvement
 - Overload Interference Attenuation improves overload performance
 - Out-of-Band Interference filtering, adjusting relative power levels, frequency swaps and frequency planning

Technical Solution:

- Is non-proprietary
- Addresses interference where it exists
- Works equally well in border and non-border areas
- Maintains interoperability
- Is pro-active

How Does a Switchable Attenuator Work?

- Attenuates all signals entering the radio front end
- Improves intermodulation rejection
 - Decreasing undesired signal 1dB provides 3 dB improvement in IM;
- Software controlled

- Engages when sufficient desired signal

Disengages in weak signal areas

- Transparent to user

 No negative impact on usable service area

IM Rejection with Switchable Attenuator

- Portable IM rejection exceeds that of mobiles when step attenuator is used
- Motorola is not aware of IM interference from CMRS sites when mobile receivers meet the Class A level of performance.

Front End Pre-Selector De-Tuning

- XTS2500 & XTS5000 7/800MHz Radios use Varactor Tuned Pre-selectors
 - Shipping since 4Q2001
- Front-end attenuation achievable by detuning varactors
 - Attenuates desired and undesired
 - Does not tighten filter passband
 - Does not pull in 3dB corner
- Software will be available in mid 2003
- Hardware attenuator will be added in 4Q 2003

Idealized characterization - all signals attenuated, real performance has variations

De-Tuning Attenuates Desired and Undesired Signals

Status of Testing to Date

- Tested in 8 markets with interference
 - Anne Arundel County
 - Columbus, Ohio
 - Sacramento Fire Department
 - Phoenix/Mesa
 - Washington County
 - Las Vegas
 - Broward County
 - City of San Diego
- Testing conducted with no increase in signal level
- Interference mitigated
 - Radio performance significantly exceeds performance of current radios
- Beta testing being implemented
- Results are very encouraging

Attenuator Implementation

- Switchable Attenuators do not Require Widespread Increase in Desired Signal
 - Most systems and areas do not experience interference no changes needed.
 - Systems designed for portable coverage should already meet minimum required signal.
 - In the event increased desired signal is needed, users get the added benefit of improved coverage/building penetration
- Does not require immediate replacement of all public safety and private user portables.
 - Going forward, Motorola will include attenuators in all future 800 MHz radios at no incremental cost.
 - Licensees can implement interference mitigation technology through normal replacement cycles.
- Users with interference have several options, depending on situation:
 - Retrofit XTS 2500 and XTS 5000 through low cost software upgrade
 - Retrofit some other models through hardware modification.
 - Some radios may need to be replaced

Out-Of-Band Emissions/Adjacent Channel Coupled Power

 Low CMRS sites may raise the noise floor in some areas

- Not a problem everywhere; depends on:
 - -Signals radiated from transmitter sites
 - Function of power, filtering, antenna patterns, local clutter
 - -PS signal strength
 - Noise floor rise can be tolerated where the PS signal is above threshold
 - Frequencies of desired & undesired signals
 - Impact to a particular channel depends on frequency separation between desired signal and interferers

Responding to Out-Of-Band Emissions

Reducing OOBE at source

- Add CMRS Transmit Filters
- Modify CMRS radiation patterns to reduce ERP in certain areas
- Change CMRS Frequencies
- Increase CMRS Site Height
- Reduce CMRS Transmit Powers

Overcoming OOBE

- Raise Desired Signal Level
- Change Frequencies for Desired Signal
- Add Site for Desired Signal (may address multiple interference cases)

Summary

- Field testing shows technical solution is practical and mitigates interference.
- Technical solution uses non-proprietary techniques which multiple manufacturers can implement.
- Solution works equally well in border and non-border areas.
- Technical solution helps maintain interoperability.
- Technical solutions can be addressed with those users receiving interference.
- Most users can implement as part of their normal radio replacement cycle at no additional cost.

There is a technology toolbox that can mitigate interference.

